3.2.82 \(\int (e+f x)^2 \sin (a+\frac {b}{(c+d x)^3}) \, dx\) [182]

3.2.82.1 Optimal result
3.2.82.2 Mathematica [A] (verified)
3.2.82.3 Rubi [A] (verified)
3.2.82.4 Maple [F]
3.2.82.5 Fricas [B] (verification not implemented)
3.2.82.6 Sympy [F]
3.2.82.7 Maxima [F]
3.2.82.8 Giac [F]
3.2.82.9 Mupad [F(-1)]

3.2.82.1 Optimal result

Integrand size = 20, antiderivative size = 330 \[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=-\frac {b f^2 \cos (a) \operatorname {CosIntegral}\left (\frac {b}{(c+d x)^3}\right )}{3 d^3}-\frac {i e^{i a} f (d e-c f) \left (-\frac {i b}{(c+d x)^3}\right )^{2/3} (c+d x)^2 \Gamma \left (-\frac {2}{3},-\frac {i b}{(c+d x)^3}\right )}{3 d^3}+\frac {i e^{-i a} f (d e-c f) \left (\frac {i b}{(c+d x)^3}\right )^{2/3} (c+d x)^2 \Gamma \left (-\frac {2}{3},\frac {i b}{(c+d x)^3}\right )}{3 d^3}-\frac {i e^{i a} (d e-c f)^2 \sqrt [3]{-\frac {i b}{(c+d x)^3}} (c+d x) \Gamma \left (-\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )}{6 d^3}+\frac {i e^{-i a} (d e-c f)^2 \sqrt [3]{\frac {i b}{(c+d x)^3}} (c+d x) \Gamma \left (-\frac {1}{3},\frac {i b}{(c+d x)^3}\right )}{6 d^3}+\frac {f^2 (c+d x)^3 \sin \left (a+\frac {b}{(c+d x)^3}\right )}{3 d^3}+\frac {b f^2 \sin (a) \text {Si}\left (\frac {b}{(c+d x)^3}\right )}{3 d^3} \]

output
-1/3*b*f^2*Ci(b/(d*x+c)^3)*cos(a)/d^3-1/3*I*exp(I*a)*f*(-c*f+d*e)*(-I*b/(d 
*x+c)^3)^(2/3)*(d*x+c)^2*GAMMA(-2/3,-I*b/(d*x+c)^3)/d^3+1/3*I*f*(-c*f+d*e) 
*(I*b/(d*x+c)^3)^(2/3)*(d*x+c)^2*GAMMA(-2/3,I*b/(d*x+c)^3)/d^3/exp(I*a)-1/ 
6*I*exp(I*a)*(-c*f+d*e)^2*(-I*b/(d*x+c)^3)^(1/3)*(d*x+c)*GAMMA(-1/3,-I*b/( 
d*x+c)^3)/d^3+1/6*I*(-c*f+d*e)^2*(I*b/(d*x+c)^3)^(1/3)*(d*x+c)*GAMMA(-1/3, 
I*b/(d*x+c)^3)/d^3/exp(I*a)+1/3*b*f^2*Si(b/(d*x+c)^3)*sin(a)/d^3+1/3*f^2*( 
d*x+c)^3*sin(a+b/(d*x+c)^3)/d^3
 
3.2.82.2 Mathematica [A] (verified)

Time = 2.57 (sec) , antiderivative size = 620, normalized size of antiderivative = 1.88 \[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=\frac {\frac {3 b d e f \cos (a) \left (\frac {\Gamma \left (\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{-\frac {i b}{(c+d x)^3}}}+\frac {\Gamma \left (\frac {1}{3},\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{\frac {i b}{(c+d x)^3}}}\right )}{c+d x}-\frac {3 b c f^2 \cos (a) \left (\frac {\Gamma \left (\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{-\frac {i b}{(c+d x)^3}}}+\frac {\Gamma \left (\frac {1}{3},\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{\frac {i b}{(c+d x)^3}}}\right )}{c+d x}-3 i (d e-c f)^2 \sqrt [3]{\frac {i b}{(c+d x)^3}} (c+d x) \Gamma \left (\frac {2}{3},\frac {i b}{(c+d x)^3}\right ) (\cos (a)-i \sin (a))+3 i (d e-c f)^2 \sqrt [3]{-\frac {i b}{(c+d x)^3}} (c+d x) \Gamma \left (\frac {2}{3},-\frac {i b}{(c+d x)^3}\right ) (\cos (a)+i \sin (a))+2 (c+d x) \left (c^2 f^2-c d f (3 e+f x)+d^2 \left (3 e^2+3 e f x+f^2 x^2\right )\right ) \cos \left (\frac {b}{(c+d x)^3}\right ) \sin (a)+\frac {3 i b d e f \left (\frac {\Gamma \left (\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{-\frac {i b}{(c+d x)^3}}}-\frac {\Gamma \left (\frac {1}{3},\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{\frac {i b}{(c+d x)^3}}}\right ) \sin (a)}{c+d x}-\frac {3 i b c f^2 \left (\frac {\Gamma \left (\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{-\frac {i b}{(c+d x)^3}}}-\frac {\Gamma \left (\frac {1}{3},\frac {i b}{(c+d x)^3}\right )}{\sqrt [3]{\frac {i b}{(c+d x)^3}}}\right ) \sin (a)}{c+d x}+2 (c+d x) \left (c^2 f^2-c d f (3 e+f x)+d^2 \left (3 e^2+3 e f x+f^2 x^2\right )\right ) \cos (a) \sin \left (\frac {b}{(c+d x)^3}\right )-2 b f^2 \left (\cos (a) \operatorname {CosIntegral}\left (\frac {b}{(c+d x)^3}\right )-\sin (a) \text {Si}\left (\frac {b}{(c+d x)^3}\right )\right )}{6 d^3} \]

input
Integrate[(e + f*x)^2*Sin[a + b/(c + d*x)^3],x]
 
output
((3*b*d*e*f*Cos[a]*(Gamma[1/3, ((-I)*b)/(c + d*x)^3]/(((-I)*b)/(c + d*x)^3 
)^(1/3) + Gamma[1/3, (I*b)/(c + d*x)^3]/((I*b)/(c + d*x)^3)^(1/3)))/(c + d 
*x) - (3*b*c*f^2*Cos[a]*(Gamma[1/3, ((-I)*b)/(c + d*x)^3]/(((-I)*b)/(c + d 
*x)^3)^(1/3) + Gamma[1/3, (I*b)/(c + d*x)^3]/((I*b)/(c + d*x)^3)^(1/3)))/( 
c + d*x) - (3*I)*(d*e - c*f)^2*((I*b)/(c + d*x)^3)^(1/3)*(c + d*x)*Gamma[2 
/3, (I*b)/(c + d*x)^3]*(Cos[a] - I*Sin[a]) + (3*I)*(d*e - c*f)^2*(((-I)*b) 
/(c + d*x)^3)^(1/3)*(c + d*x)*Gamma[2/3, ((-I)*b)/(c + d*x)^3]*(Cos[a] + I 
*Sin[a]) + 2*(c + d*x)*(c^2*f^2 - c*d*f*(3*e + f*x) + d^2*(3*e^2 + 3*e*f*x 
 + f^2*x^2))*Cos[b/(c + d*x)^3]*Sin[a] + ((3*I)*b*d*e*f*(Gamma[1/3, ((-I)* 
b)/(c + d*x)^3]/(((-I)*b)/(c + d*x)^3)^(1/3) - Gamma[1/3, (I*b)/(c + d*x)^ 
3]/((I*b)/(c + d*x)^3)^(1/3))*Sin[a])/(c + d*x) - ((3*I)*b*c*f^2*(Gamma[1/ 
3, ((-I)*b)/(c + d*x)^3]/(((-I)*b)/(c + d*x)^3)^(1/3) - Gamma[1/3, (I*b)/( 
c + d*x)^3]/((I*b)/(c + d*x)^3)^(1/3))*Sin[a])/(c + d*x) + 2*(c + d*x)*(c^ 
2*f^2 - c*d*f*(3*e + f*x) + d^2*(3*e^2 + 3*e*f*x + f^2*x^2))*Cos[a]*Sin[b/ 
(c + d*x)^3] - 2*b*f^2*(Cos[a]*CosIntegral[b/(c + d*x)^3] - Sin[a]*SinInte 
gral[b/(c + d*x)^3]))/(6*d^3)
 
3.2.82.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 313, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3914, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx\)

\(\Big \downarrow \) 3914

\(\displaystyle \frac {\int \left (\sin \left (a+\frac {b}{(c+d x)^3}\right ) (d e-c f)^2+2 f (c+d x) \sin \left (a+\frac {b}{(c+d x)^3}\right ) (d e-c f)+f^2 (c+d x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right )\right )d(c+d x)}{d^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {1}{3} b f^2 \cos (a) \operatorname {CosIntegral}\left (\frac {b}{(c+d x)^3}\right )-\frac {1}{3} i e^{i a} f (c+d x)^2 \left (-\frac {i b}{(c+d x)^3}\right )^{2/3} (d e-c f) \Gamma \left (-\frac {2}{3},-\frac {i b}{(c+d x)^3}\right )+\frac {1}{3} i e^{-i a} f (c+d x)^2 \left (\frac {i b}{(c+d x)^3}\right )^{2/3} (d e-c f) \Gamma \left (-\frac {2}{3},\frac {i b}{(c+d x)^3}\right )-\frac {1}{6} i e^{i a} (c+d x) \sqrt [3]{-\frac {i b}{(c+d x)^3}} (d e-c f)^2 \Gamma \left (-\frac {1}{3},-\frac {i b}{(c+d x)^3}\right )+\frac {1}{6} i e^{-i a} (c+d x) \sqrt [3]{\frac {i b}{(c+d x)^3}} (d e-c f)^2 \Gamma \left (-\frac {1}{3},\frac {i b}{(c+d x)^3}\right )+\frac {1}{3} b f^2 \sin (a) \text {Si}\left (\frac {b}{(c+d x)^3}\right )+\frac {1}{3} f^2 (c+d x)^3 \sin \left (a+\frac {b}{(c+d x)^3}\right )}{d^3}\)

input
Int[(e + f*x)^2*Sin[a + b/(c + d*x)^3],x]
 
output
(-1/3*(b*f^2*Cos[a]*CosIntegral[b/(c + d*x)^3]) - (I/3)*E^(I*a)*f*(d*e - c 
*f)*(((-I)*b)/(c + d*x)^3)^(2/3)*(c + d*x)^2*Gamma[-2/3, ((-I)*b)/(c + d*x 
)^3] + ((I/3)*f*(d*e - c*f)*((I*b)/(c + d*x)^3)^(2/3)*(c + d*x)^2*Gamma[-2 
/3, (I*b)/(c + d*x)^3])/E^(I*a) - (I/6)*E^(I*a)*(d*e - c*f)^2*(((-I)*b)/(c 
 + d*x)^3)^(1/3)*(c + d*x)*Gamma[-1/3, ((-I)*b)/(c + d*x)^3] + ((I/6)*(d*e 
 - c*f)^2*((I*b)/(c + d*x)^3)^(1/3)*(c + d*x)*Gamma[-1/3, (I*b)/(c + d*x)^ 
3])/E^(I*a) + (f^2*(c + d*x)^3*Sin[a + b/(c + d*x)^3])/3 + (b*f^2*Sin[a]*S 
inIntegral[b/(c + d*x)^3])/3)/d^3
 

3.2.82.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3914
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f 
_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Module[{k = If[FractionQ[n], Denominat 
or[n], 1]}, Simp[k/f^(m + 1)   Subst[Int[ExpandIntegrand[(a + b*Sin[c + d*x 
^(k*n)])^p, x^(k - 1)*(f*g - e*h + h*x^k)^m, x], x], x, (e + f*x)^(1/k)], x 
]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[p, 0] && IGtQ[m, 0]
 
3.2.82.4 Maple [F]

\[\int \left (f x +e \right )^{2} \sin \left (a +\frac {b}{\left (d x +c \right )^{3}}\right )d x\]

input
int((f*x+e)^2*sin(a+b/(d*x+c)^3),x)
 
output
int((f*x+e)^2*sin(a+b/(d*x+c)^3),x)
 
3.2.82.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 576 vs. \(2 (264) = 528\).

Time = 0.11 (sec) , antiderivative size = 576, normalized size of antiderivative = 1.75 \[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=-\frac {2 \, b f^{2} \cos \left (a\right ) \operatorname {Ci}\left (\frac {b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) - 2 \, b f^{2} \sin \left (a\right ) \operatorname {Si}\left (\frac {b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) + 3 \, {\left ({\left (i \, d^{3} e f - i \, c d^{2} f^{2}\right )} \cos \left (a\right ) + {\left (d^{3} e f - c d^{2} f^{2}\right )} \sin \left (a\right )\right )} \left (\frac {i \, b}{d^{3}}\right )^{\frac {2}{3}} \Gamma \left (\frac {1}{3}, \frac {i \, b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) + 3 \, {\left ({\left (-i \, d^{3} e f + i \, c d^{2} f^{2}\right )} \cos \left (a\right ) + {\left (d^{3} e f - c d^{2} f^{2}\right )} \sin \left (a\right )\right )} \left (-\frac {i \, b}{d^{3}}\right )^{\frac {2}{3}} \Gamma \left (\frac {1}{3}, -\frac {i \, b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) + 3 \, {\left ({\left (i \, d^{3} e^{2} - 2 i \, c d^{2} e f + i \, c^{2} d f^{2}\right )} \cos \left (a\right ) + {\left (d^{3} e^{2} - 2 \, c d^{2} e f + c^{2} d f^{2}\right )} \sin \left (a\right )\right )} \left (\frac {i \, b}{d^{3}}\right )^{\frac {1}{3}} \Gamma \left (\frac {2}{3}, \frac {i \, b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) + 3 \, {\left ({\left (-i \, d^{3} e^{2} + 2 i \, c d^{2} e f - i \, c^{2} d f^{2}\right )} \cos \left (a\right ) + {\left (d^{3} e^{2} - 2 \, c d^{2} e f + c^{2} d f^{2}\right )} \sin \left (a\right )\right )} \left (-\frac {i \, b}{d^{3}}\right )^{\frac {1}{3}} \Gamma \left (\frac {2}{3}, -\frac {i \, b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right ) - 2 \, {\left (d^{3} f^{2} x^{3} + 3 \, d^{3} e f x^{2} + 3 \, d^{3} e^{2} x + 3 \, c d^{2} e^{2} - 3 \, c^{2} d e f + c^{3} f^{2}\right )} \sin \left (\frac {a d^{3} x^{3} + 3 \, a c d^{2} x^{2} + 3 \, a c^{2} d x + a c^{3} + b}{d^{3} x^{3} + 3 \, c d^{2} x^{2} + 3 \, c^{2} d x + c^{3}}\right )}{6 \, d^{3}} \]

input
integrate((f*x+e)^2*sin(a+b/(d*x+c)^3),x, algorithm="fricas")
 
output
-1/6*(2*b*f^2*cos(a)*cos_integral(b/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c 
^3)) - 2*b*f^2*sin(a)*sin_integral(b/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + 
c^3)) + 3*((I*d^3*e*f - I*c*d^2*f^2)*cos(a) + (d^3*e*f - c*d^2*f^2)*sin(a) 
)*(I*b/d^3)^(2/3)*gamma(1/3, I*b/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3) 
) + 3*((-I*d^3*e*f + I*c*d^2*f^2)*cos(a) + (d^3*e*f - c*d^2*f^2)*sin(a))*( 
-I*b/d^3)^(2/3)*gamma(1/3, -I*b/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)) 
 + 3*((I*d^3*e^2 - 2*I*c*d^2*e*f + I*c^2*d*f^2)*cos(a) + (d^3*e^2 - 2*c*d^ 
2*e*f + c^2*d*f^2)*sin(a))*(I*b/d^3)^(1/3)*gamma(2/3, I*b/(d^3*x^3 + 3*c*d 
^2*x^2 + 3*c^2*d*x + c^3)) + 3*((-I*d^3*e^2 + 2*I*c*d^2*e*f - I*c^2*d*f^2) 
*cos(a) + (d^3*e^2 - 2*c*d^2*e*f + c^2*d*f^2)*sin(a))*(-I*b/d^3)^(1/3)*gam 
ma(2/3, -I*b/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)) - 2*(d^3*f^2*x^3 + 
 3*d^3*e*f*x^2 + 3*d^3*e^2*x + 3*c*d^2*e^2 - 3*c^2*d*e*f + c^3*f^2)*sin((a 
*d^3*x^3 + 3*a*c*d^2*x^2 + 3*a*c^2*d*x + a*c^3 + b)/(d^3*x^3 + 3*c*d^2*x^2 
 + 3*c^2*d*x + c^3)))/d^3
 
3.2.82.6 Sympy [F]

\[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=\int \left (e + f x\right )^{2} \sin {\left (a + \frac {b}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}} \right )}\, dx \]

input
integrate((f*x+e)**2*sin(a+b/(d*x+c)**3),x)
 
output
Integral((e + f*x)**2*sin(a + b/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3* 
x**3)), x)
 
3.2.82.7 Maxima [F]

\[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=\int { {\left (f x + e\right )}^{2} \sin \left (a + \frac {b}{{\left (d x + c\right )}^{3}}\right ) \,d x } \]

input
integrate((f*x+e)^2*sin(a+b/(d*x+c)^3),x, algorithm="maxima")
 
output
1/3*(f^2*x^3 + 3*e*f*x^2 + 3*e^2*x)*sin((a*d^3*x^3 + 3*a*c*d^2*x^2 + 3*a*c 
^2*d*x + a*c^3 + b)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)) + integrate 
(1/2*(b*d*f^2*x^3 + 3*b*d*e*f*x^2 + 3*b*d*e^2*x)*cos((a*d^3*x^3 + 3*a*c*d^ 
2*x^2 + 3*a*c^2*d*x + a*c^3 + b)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3) 
)/(d^4*x^4 + 4*c*d^3*x^3 + 6*c^2*d^2*x^2 + 4*c^3*d*x + c^4), x) + integrat 
e(1/2*(b*d*f^2*x^3 + 3*b*d*e*f*x^2 + 3*b*d*e^2*x)*cos((a*d^3*x^3 + 3*a*c*d 
^2*x^2 + 3*a*c^2*d*x + a*c^3 + b)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3 
))/((d^4*x^4 + 4*c*d^3*x^3 + 6*c^2*d^2*x^2 + 4*c^3*d*x + c^4)*cos((a*d^3*x 
^3 + 3*a*c*d^2*x^2 + 3*a*c^2*d*x + a*c^3 + b)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c 
^2*d*x + c^3))^2 + (d^4*x^4 + 4*c*d^3*x^3 + 6*c^2*d^2*x^2 + 4*c^3*d*x + c^ 
4)*sin((a*d^3*x^3 + 3*a*c*d^2*x^2 + 3*a*c^2*d*x + a*c^3 + b)/(d^3*x^3 + 3* 
c*d^2*x^2 + 3*c^2*d*x + c^3))^2), x)
 
3.2.82.8 Giac [F]

\[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=\int { {\left (f x + e\right )}^{2} \sin \left (a + \frac {b}{{\left (d x + c\right )}^{3}}\right ) \,d x } \]

input
integrate((f*x+e)^2*sin(a+b/(d*x+c)^3),x, algorithm="giac")
 
output
integrate((f*x + e)^2*sin(a + b/(d*x + c)^3), x)
 
3.2.82.9 Mupad [F(-1)]

Timed out. \[ \int (e+f x)^2 \sin \left (a+\frac {b}{(c+d x)^3}\right ) \, dx=\int \sin \left (a+\frac {b}{{\left (c+d\,x\right )}^3}\right )\,{\left (e+f\,x\right )}^2 \,d x \]

input
int(sin(a + b/(c + d*x)^3)*(e + f*x)^2,x)
 
output
int(sin(a + b/(c + d*x)^3)*(e + f*x)^2, x)